Analysis of the dihydropyridine receptor site of L-type calcium channels by alanine-scanning mutagenesis.

نویسندگان

  • B Z Peterson
  • B D Johnson
  • G H Hockerman
  • M Acheson
  • T Scheuer
  • W A Catterall
چکیده

The dihydropyridine Ca2+ antagonist drugs used in the therapy of cardiovacular disorders inhibit L-type Ca2+ channels by binding to a single high affinity site. Photoaffinity labeling and analysis of mutant Ca2+ channels implicate the IIIS6 and IVS6 segments in high affinity binding. The amino acid residues that are required for high affinity binding of dihydropyridine Ca2+ channel antagonists were probed by alanine-scanning mutagenesis of the alpha1C subunit, transient expression in mammalian cells, and analysis by measurements of ligand binding and block of Ba2+ currents through expressed Ca2+ channels. Eleven amino acid residues in transmembrane segments IIIS6 and IVS6 were identified whose mutation reduced the affinity for the Ca2+ antagonist PN200-110 by 2-25-fold. Both amino acid residues conserved among Ca2+ channels and those specific to L-type Ca2+ channels were found to be required for high affinity dihydropyridine binding. In addition, mutation F1462A increased the affinity for the dihydropyridine Ca2+ antagonist PN200-110 by 416-fold with no effect on the affinity for the Ca2+ agonist Bay K8644. The residues in transmembrane segments IIIS6 and IVS6 that are required for high affinity binding are primarily aligned on single faces of these two alpha helices, supporting a "domain interface model" of dihydropyridine binding and action in which the IIIS6 and IVS6 interact to form a high affinity dihydropyridine receptor site on L-type Ca2+ channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Effects of Novel Dihydropyridines as Dual Calcium Channel Blocker and Angiotensin Antagonist on Isolated Rat Aorta

Objective(s) Four novel losartan analogues 5a-d were synthesized by connecting a dihydropyridine nucleus to imidazole ring. The effects of 5a and 5b on angiotensin receptors (AT') and L-type calcium channels were investigated on isolated rat aorta. Materials and Methods Aortic rings were pre-contracted with 1 pM Angiotensin II or 80 mM KCl and relaxant effects of losartan, nifedipine, 5a and...

متن کامل

Replacement of Serine363 and Serine375 Codons by Alanine in Rat μ-Opioid Receptor cDNA

     The aim of this study was to use site directed mutagenesis technique to construct a vector in which serine363 and serine375 residues of the COOH-terminal portion of the μ-opioid receptor (MOR) were substituted by alanine. These constructs are essential in studying G-protein coupled receptor kinase-mediated MOR desensiti-zation. The nested PCR carried out for conversio...

متن کامل

Block of L-type calcium channels by charged dihydropyridines. Sensitivity to side of application and calcium

We have studied block of L-type calcium channels by intracellular and extracellular application of the ionized dihydropyridine derivatives amlodipine and SDZ 207-180. We find that extracellular application of either drug causes voltage-dependent block of calcium channels. However, neither drug is effective when applied intracellularly. The insensitivity of calcium channels to intracellular drug...

متن کامل

Synthesis and Biological Evaluation of New Tricyclic Dihydropyridine Based Derivatives on Potassium Channels

The present study reports a microwave-assisted method for the synthesis of twelve novel tricyclic 1,4-dihydropyridine derivatives in which dimethyl-substituted cyclohexane and / or tetrahydrothiophene rings are fused to the DHP ring. The structures of the compounds were confirmed by spectral methods and elemental analysis. The potassium channel opening effects of the compounds were determined o...

متن کامل

Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes.

We measured [3H]PN200-110 binding and patch-clamp currents in rabbit ventricular myocytes to determine if there is a disparity between the density of dihydropyridine-specific receptors and functional L-type calcium channels, as has been reported for skeletal muscle. The dihydropyridine receptor density was 74.7 +/- 4.2 fmol/mg protein (mean +/- SEM, Kd = 1.73 +/- 0.29 nM, n = 6) in ventricular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 30  شماره 

صفحات  -

تاریخ انتشار 1997